Exercise 3B Problem 5
Problem Give an example of a linear map $T: \mathbb{R}^4 \to \mathbb{R}^4$ such that $$\textrm{range} \thinspace T = \textrm{null} \thinspace T$$ Solution Define $T$ by $T(x_1, x_2, x_3, x_4) = (0, x_1, 0, x_3)$ for all $x_1,x_2,x_3,x_4 \in \mathbb{R}$, then $\textrm{range} \thinspace T = \textrm{null} \thinspace T = \lbrace (0,x,0,y) | x,y \in \mathbb{R}\rbrace$.