Exercise 1C Problem 20
Problem Suppose $$U = \lbrace (x,x,y,y) \in \mathbb{F}^4 |x,y \in \mathbb{F} \rbrace$$ Find a subspace $W$ of $\mathbb{F}^4$ such that $\mathbb{F}^4 = U \oplus W$ Solution Let $W = \lbrace (0,x^\prime,0,y^\prime) \in \mathbb{F}^4 | x^\prime,y^\prime \in \mathbb{F} \rbrace$, then: $$U + W \stackrel{D1.36}{=} \lbrace (x,x,y,y) + (0,x^\prime,0,y^\prime) | x,y,x^\prime,y^\prime \in \mathbb{F} \rbrace$$ $$\stackrel{D1.12}{=} \lbrace (x,x + x^\prime,y,y + y^\prime) | x,y,x^\prime,y^\prime \in \mathbb{F} \rbrace$$ Define $x_1 = x, x_2 = x + x^\prime, x_3 = y$ and $x_4 = x + y^\prime$, then: $$U + W = \lbrace (x_1, x_2, x_3, x_4) | x_1, x_2, x_3, x_4 \in \mathbb{F} \rbrace = \mathbb{F}^4$$ Also it’s clear that $U \cap W = \lbrace 0 \rbrace$, thus $U \oplus W = \mathbb{F}^4$....